
Twitter-based Urban Area Characterization by
Non-negative Matrix Factorization

Shoko Wakamiya
Kyoto Sangyo University

Kyoto, Japan
shokow@cc.kyoto-

su.ac.jp

Ryong Lee
Korea Institute of Science and

Technology Information
Daejeon, Korea

lee.ryong@gmail.com

Yukiko Kawai
Kyoto Sangyo University

Kyoto, Japan
kawai@cc.kyoto-su.ac.jp

Kazutoshi Sumiya
Kwansei Gakuin University

Hyogo, Japan
sumiya@kwansei.ac.jp

ABSTRACT
Due to the remarkable growth of various social networks
boosted by the pervasive mobile devices, massive crowds can
become social sensors which can share microbolgs on a va-
riety of social situations and natural phenomena in urban
space in real-time. In order to take advantages of the novel
realm of crowd-sourced lifelogs to characterize urban areas,
we attempt to explore characteristics of complex and dy-
namic urban areas by monitoring crowd behavior via location-
based social networks. In particular, we define social con-
ditions consisting of crowd’s experiential features extracted
from the analysis of Twitter-based crowd’s lifelogs. Then,
we explore latent characteristic faces of urban areas in term
of 5-dimensional social conditions by applying Non-negative
Matrix Factorization (NMF). In the experiments with mas-
sive geo-tagged tweets, we classify urban areas into represen-
tative groups based on their latent patterns which enable to
comprehensively understand images of the urban areas fo-
cusing on crowd’s daily lives.

Categories and Subject Descriptors
[Information systems]: Location based services; [Social
and professional topics]: Geographic characteristics

Keywords
Crowd Experience; latent Patterns; LBSN; location-based
social networks; NMF; Twitter

1. INTRODUCTION
Urban areas increasingly become a complex and dynamic

space where numerous people, structures and a variety of
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social and natural phenomena are always mixed and inter-
acting with each other. We need to understand social and
geographic features of diverse areas in cities well for taking
advantages of today’s complex urban space for better liv-
ing and decision makings, e.g. when renting or buying a
house, deciding accommodations while travelling, conduct-
ing neighborhood marketing, and planning urban develop-
ment. However, drawing an image of unfamiliar or ever
evolving city in mind is a non-trivial task, since overwhelm-
ing complexity of big cities makes it hard for us to keep up
with the increasing structures and characteristic features of
diverse areas.

Conventionally, in order to draw an image of an urban
space, we usually refer to various thematic maps which were
well investigated and represented regarding urban facilities
or characteristics by expert cartographers, or heuristically
learning urban towns where we visited [11]. However, due
to the recent urbanization, these limited approaches cannot
satisfy today’s users who would like to follow the most up-to-
date urban status and broadly and comprehensively under-
stand complicated urban areas from multiple perspectives
intuitively. Meanwhile, the proliferation of mobile devices
and the explosive growth of social networks have made a sig-
nificant convergence bearing location-based social networks
(LBSNs), with which people can share their lifelogs possibly
with their whereabouts by the location-sensing functions on
the mobile devices. In particular, this kind of drastic change
has another important implication that massive crowds in an
urban space with such capabilities can be regarded as social
sensors. Obviously, different from electronic sensors for ob-
serving primitive physical status, crowds in LBSNs can be
further smarter and talented sensors reporting on a variety
of urban status from natural phenomena to social events [9].
Therefore, we are able to explore broader and more com-
prehensive characteristics of urban areas through massive
crowd experiences shared over LBSNs.

In this paper, we attempt to extract urban characteris-
tics in terms of crowd experiences observed through Twit-
ter. Specifically, we explore latent patterns of crowd ex-
periences in urban areas. For this, we define and measure
five crowd experiential features as a social condition in each
urban area; population, activity, mood, topic, and social re-
lationship as shown in Figure 1. We assume that people



Figure 1: Research model: Crowd-sourced urban character-
ization based on LBSNs

accumulate partial images which they experienced or per-
ceived when forming urban characteristics. In order to com-
pute urban characteristics based on the process of human’s
perception, we generate a matrix of social conditions and
urban areas by analyzing collected tweets and decompose
the matrix by applying Non-negative Matrix Factorization
(NMF) [6, 2]. NMF can effectively find out partial latent
patterns of social conditions in urban areas because of its
non-negativity constraints to the matrix. Then, we classify
urban areas by measuring the similarity of their additive
combinations of latent patterns. Finally, we reason common
urban characteristics in the grouped urban clusters.
Our contributions are summarized as follows:

• to measure social conditions indicating the status
of local circumstances focusing on crowd experiences
such as behavior and mind using massive geo-tagged
tweets,

• to determine latent localized patterns of urban areas
in terms of social conditions by factorizing a matrix by
means of NMF which enables us to consider the pro-
cess of human’s perception when understanding urban
characteristics, and

• to classify them into representative groups by deter-
mining similar characteristics based on additive com-
binations of latent patterns.

The remainder of this paper is organized as follows: Sec-
tion 2 describes related work. Section 3 explains the overall
procedure to characterize urban areas and Section 4 illus-
trates experimental results with massive geo-tagged tweets.
Finally, Section 5 concludes this paper and describes future
work.

2. RELATED WORK
We summarize recent research work on extraction and uti-

lization of crowd’s experiential features as exemplified in this
paper such as population, activity, mood, topic, and social
relationship, with crowd-sourced dataset.

Figure 2: Procedure of socio-geographic urban characteriza-
tion

There are several researches on urban analyses by mon-
itoring crowd’s behavior in an urban space observed using
crowd-sourced datasets. In our previous work [7], we pro-
posed a method to detect geo-social events and phenomena
such as local festivals and natural disasters by measuring
regularity of urban areas in terms of crowd’s behavior ob-
served quantitative analysis of geo-tagged tweets without us-
ing textual contents. Furthermore, we developed a method
to characterize urban areas by measuring usual crowd’s be-
havioral patterns in urban areas [16, 8]. Zheng et al. [18]
interestingly analyzed tourist travel patterns by exploiting
geo-tagged photos on photo-sharing services. McArdle et
al. [12] investigated the usefulness of digital footprints of in-
dividual movement for calibrating human mobility models
within an urban traffic micro-simulation framework. Hsieh
et al. [3] presented a method to recommend a time-sensitive
trip route by squeezing a lot of knowledge from check-in
data over location-based services. Yuan et al. [17] proposed
a framework to discover different functional regions such as
educational areas, entertainment areas, and regions of his-
toric interests in a city by analyzing human mobility based
on trajectory data of taxies and POIs.

As for analyses of crowd’s mind observed from crowd-
sourced datasets, O’Connor et al. [14] examined the rela-
tions between public opinion from polls and sentiment mea-
sured from textual messages on social networks. Mislove et
al. [13] generated cartograms for presenting public moods
throughout a day in the U.S. by examining textual mes-
sages on Twitter. Lampos et al. [5] extracted topics in the
real world from Twitter for detecting and predicting events
or phenomena. In addition, Lehmann et al. [10] analyzed



Figure 3: Types of urban cluster generation in Osaka, Japan

temporal hashtag-based topics to find event occurrence and
epidemic spreading.
In contrast, in this paper, we extract five-dimensional

social conditions which comprehensively include significant
crowd experiences in an urban space using geo-tagged tweets
for detecting latent characteristic faces of urban areas.

3. SOCIO-GEOGRAPHIC URBAN CHARAC-
TERIZATION

3.1 Gathering Crowd’s Urban Lifelogs on Twit-
ter

First of all, we gather geo-tagged tweets from Twitter to
observe crowd activities in the real world. Although, with
Twitter, we can obtain tweets publicly published through
the site’s Open API1, it is not feasible to gather massive
geo-tagged tweets for a large scale area in a short time.
Specifically, it takes considerable time to acquire a signif-
icant number of geo-tagged tweets because of certain prac-
tical limitations: In fact, Twitter presents a restricted Open
API which solely supports the simplest near-by search based
on a specified central location and a radius. Therefore, in
order to overcome these restrictions and perform periodic
monitoring of any size of user-specified regions, we devel-
oped a system to efficiently collect Twitter data in terms
of geography based on a quad-tree space partitioning in our
precious work [7] as shown in Figure 2(a).

3.2 Setting Urban Clusters
In order to monitor crowd experiences in urban areas for

characterizing urban space, we need to set urban clusters
by partitioning a given region into appropriate sub-areas as
illustrated in Figure 2(b). As for ways of urban space par-
titioning for examining locally noteworthy areas, there are
several different space-partitioning methods; a) administra-
tive areas, b) grid-based space splitting, and c) density-based
clustering shown in Figure 3. First, administrative areas can
be formed by splitting a target region into prefectures and
municipalities based on administrative boundaries; for in-
stance, limits or borders of a geographical area under the
jurisdiction of some governmental or managerial entity as
shown in Figure 3(a). However, this approach cannot figure
out social boundaries which are less relevant to the admin-
istrative boundaries, since crowd often easily cross over the

1Twitter Search API: http://apiwiki.twitter.com/Twitter-
Search-API-Method%3A-search

Figure 4: Process of constructing socio-geographic bound-
aries based on EM algorithm and Voronoi Diagram

administrative boundaries. Accordingly, we consider that
this method would be inappropriate for examining crowd
experiences. Next, as for the grid approach, it is difficult
to decide the adequate cell size because a grid is formed
by a lot of equal-sized cells as shown in Figure 3(b). In
addition, it would consume considerable costs for observ-
ing crowd behavior due to the non-uniform distribution of
crowds. On the other hand, in case of the clustering-based
space partitioning as illustrated in Figure 3(c), it can reflect
the geographical distribution of crowds, in our case, based
on location information of geo-tagged tweets in an adap-
tive way. Thus, we can effectively establish the appropriate
socio-geographic boundaries for the target region and parti-
tion into urban areas by referring to the actual geographic
crowd experience.

In this work, we construct the cluster-based setting of ur-
ban clusters which can take into consideration of natural
geographic distribution of crowds. Especially, in our exper-
iment in Section 4, since we deal with millions of locational
data of geo-tagged tweets obtained from Twitter, it requires
enormous computational efforts to find appropriate parti-
tioning. Therefore, we have to reduce the data size in much
smaller and computable size without lack of essential quality



Figure 5: (a) Population density in Osaka and (b) extracted
urban clusters

of the original data. For this, we adopt a spatial data sum-
marizing method by Nearest Neighbor Clutter Removal [1]
which can split the data into two groups of high-frequency
part (dark blue in Figure 2(b)) and low-frequency part (light
blue in Figure 2(b)) keeping the original geographic distri-
bution. Although it is used for distinguishing noise from a
given data, in the case of tweets, high-frequency points are
naturally observed around high-populated areas. Therefore,
using only high-frequency points is few clusters in subur-
ban areas. In order to solve this problem, we also utilize
the low-frequency parts. We also make clusters for the two
datasets by means of EM algorithm as shown in Figure 4(b)
and (c). After that, we depict a Voronoi diagram. using
the central points of all clusters as shown in Figure 4(d).
Finally, we generate convex-hull which creates a minimum
convex boundary for each cluster to reduce unnecessary re-
gions as shown in Figure 4(e) and Figure 5(b). Thus, we
can effectively establish the appropriate boundaries for the
target region and partition into urban clusters by referring
to the actual geographic crowd experience.

3.3 Extracting Social Conditions from Crowd
Experiences

We extract and utilize crowd experiences through LB-
SNs for characterizing urban areas as shown in Figure 2(c).
Specifically, we compute a social condition for each urban
cluster (ri ∈ R), in terms of the five fundamental aspects.
We define a social condition SoCi for an urban cluster ri
in terms of the five indicators; Population (POi), Activity
(ACi), Mood (MOi), Topic (TOi), and Social Relationship
(SRi). The indicators are computed as a normalized value
between 0 and 1.0 by dividing each value by the sum over
all the clusters.

PO (Population) : This means the number of distinct
users in each urban cluster. In order to get the count of
users in an urban cluster ri, we made a database query
with a condition that find outs distinct users inside of
the corresponding convex-based polygon.

Figure 6: A matrix consisting of social conditions in all ur-
ban clusters

AC (Activity) : This is designated to measure the de-
gree of active status of crowds for an urban cluster.
Thus, we approach the most straightforward way by
counting the number of tweets and crowd’s movements.
We count the inner movements for every moving user,
whose the number of tweets at different locations should
be at least more than or equal to two.

MO (Mood) : This represents the overall atmosphere of
local society by measuring their sentiments. We first
measure the sentiment of each tweet found in an urban
cluster and eventually sum up the degree of crowd’s
sentiments. We refer to a Japanese dictionary con-
sisted of the list of semantic words and their orienta-
tions which indicate whether each word has positive
or negative meaning [15] and are represented by a nu-
meric score between −1.0 (negative) and 1.0 (positive).

TO (Topic) : This is an interesting measure to examine
how many different topics crowds are interested in. It
may reflect the diversity of crowd’s interests or local
clusters. For the simplicity, we count the appearances
of four types of information regarding hashtags, pho-
tos, videos and links, which can be extracted by means
of regular expressions.

SR (Social Relationship) : The social relationships among
people would be an important measurement to indi-
cate the local society, which is eventually affecting lo-
cal urban cluster’s image. In the respect, we utilize two
definitive clues from Twitter by ‘retweet (RT)’ and ‘re-
ply (@user id)’.

Consequently, we could obtain a matrix of social conditions
of these five crowd’s experiential features for urban clusters
as illustrated in Figure 6, where 73 urban clusters shown in
Figure 5 are aggregated above features.

3.4 Exploring Latent Characteristics of Urban
Clusters

On the basis of the process of human’s urban characteriza-
tion, we find out latent partial patterns of social conditions
in urban clusters by applying Non-negative Matrix Factor-
ization (NMF) [6, 2] as shown in Figure 2(d) and extract
urban characteristics as shown in Figure 2(e). Specifically,
NMF decomposes a given matrix X (= n×m) to two matri-
ces, W and H with non-negativity constraints. In fact, the



(a) Basis matrix X (SoC × LP ) (b) Coefficient matrix W (LP × UC)

Figure 7: A result of matrix factorization by NMF

constraints are appropriate to deal with social conditions
based on crowd experiences which must be either positive
value or 0 quantitatively. In addition, NMF enables to dis-
cover a parts-based representation because of allowing only
additive combination based on the constraints.
Formally, we define the formula, X = W · H + α, where

W is a basis matrix, H is a coefficient matrix and α is a
residual matrix. The dimensions of the matrix factors W
and H are n × f and f × m, respectively. The product
W · H can be regarded as a compressed form of the data
in X. In this paper, we first construct a matrix X made of
social condition vectors SoC = (PO,AC,MO, TO, SR) and
urban clusters (ri ∈ UC,1 ≤ i ≤ m) as given in Figure 6
and then decompose it into a basis matrix SoC ×LP and a
coefficient matrix LP ×UC, where LP is a set of latent pat-
terns P1, . . . , Pf . By this, we represent social conditions in
an urban cluster as an additive combination of latent pat-
terns of the social conditions in the urban cluster. Then,
in order to extract common urban characteristics, we group
urban clusters having similar additive combinations of la-
tent patterns. Specifically, we measure a similarity between
urban clusters using Muliti-Dimensional Scaling (MDS) [4]
and project them on a 2D space. This method provides a
mapping where similar high-dimensional data are positioned
close on an output space. Then, we classify urban clusters
into k urban groups by means of k-means algorithm (k was
empirically set on 4 in the experiments described in Section
4). Finally, we extract and reason representative combina-
tions of latent patterns as characteristics of urban clusters
in the same urban group.

4. EXPERIMENT

4.1 Experimental Setting
In order to extract social conditions of urban areas, we col-

lected geo-tagged tweets from Twitter using our geograph-
ical tweets gathering system [7]. Consequently, we could
acquire 1, 041, 449 geo-tagged tweets from 60, 828 distinct
users for one week between August 19-26, 2012 in Osaka,

(a) Urban clusters of latent
pattern P2

(b) Urban clusters of latent
pattern P7

Figure 8: Geographic distribution of urban clusters related
to latent patterns

Japan with the latitude range [34.27182: 35.05129] and the
longitude range [135.09316: 135.74660]. Next, we located
urban clusters in the target space by constructing socio-
geographic boundaries based on the density of crowds as
shown in Figure 5(a). As a result, we could find 73 polygonal
urban clusters (from r1 to r73) as illustrated in Figure 5(b).
In fact, these clusters were successfully created as our ex-
pectation to cover most downtown areas in this area. For
instance, a populated area in Osaka city was separated into
two major clusters; the one is Osaka Kita Ward (r16) which
is a busy commercial area around the largest station in Os-
aka, Osaka station, and the other is Osaka Minami (r23)
which is a popular downtown where lots of young people,
families and tourists come. In addition, our method could
take Kansai International Airport (r71) as one of urban clus-



ters.

Figure 9: Urban clusters grouped by MDS and k-means al-
gorithm (k = 4)

4.2 Examined Latent Patterns of Urban Clus-
ters

Figure 6 shows a matrix consisting of 5-dimensional social
conditions and 73 urban clusters (SoC × UC). This matrix
represents a normalized summary for all the urban clusters
(in the columns) regarding social conditions (in the rows).
With this matrix, we examine the target space in terms of so-
cial conditions (SoC) in a simple way. However, we need to
conduct further analysis to examine the implicit and latent
patterns which can classify the urban clusters UC regarding
the possible combination of social conditions. Subsequently,
by applying NMF to this matrix, we decomposed it into two
matrices SoC × LP and LP × UC as shown in Figure 7(a)
and (b) respectively, where this result is expressed by means
of two heatmaps. The generated latent patterns mean that
urban clusters of interests have 8 faces based on social con-
ditions. In detail, the matrix SoC×LP in Figure 7(a) shows
social conditions consisting of each latent pattern. For in-
stance, P1 consists of AC, while P3 consists of SR and MO.
In the respect of social conditions (in the rows), we can see
MO and AC are related to three latent patterns, respec-
tively (the former is P3, P4, and P8 and the latter is P1, P6,
and P7). In contrast, SR is relevant to two latent patterns;
P3 and P7, and PO and TO are strongly related to just one
latent pattern; P2 and P5, respectively.
Then, we represented the results in the two matrices on

a map for examining the relations between social conditions
and urban clusters focusing on geographic features. Here,
we show two maps detailing the areas of P2 and P7 as illus-
trated in Figure 8(a) and (b), respectively. Urban clusters of
P2 have a characteristic face in terms of population. In fact,
we can find the relevant urban clusters in Osaka city abun-
dantly crowded in this whole experimental area. Especially,
these urban clusters include the largest station, Osaka sta-
tion (r16) and some downtowns like Osaka Minami (r23). On
the other hand, urban clusters of P7 are distinguished from

Figure 10: Characteristic latent patterns in urban groups

others in terms of activity, topic, and mood. Actually, we
can see these clusters in sub-urban of this experimental area.
Interestingly, we can find r71 (Kansai International Airport)
where lots of people obviously go to abroad or other cities in
Japan, they may feel happy and aggressively write tweets.

4.3 Grouped Urban Areas Based on Combi-
nations of Latent Patterns

Next, we grouped urban clusters which were observed sim-
ilar combinations of latent patterns. Based on the deter-
mined relations in Figure 7, we measured MDS-based sim-
ilarity of all urban clusters. Then, we generated 4 urban
groups (from G1 to G4) by applying k-means algorithm (k
was empirically set on 4) as illustrated in Figure 9.

Subsequently, we observed common combinations of la-
tent patterns in members of each urban group. In fact, as
for from G1 to G3, we could detect significant combinations
of latent patterns P2, P7 and P8, respectively, while G4 was
less clear as shown in Figure 10. The figure also shows defi-
nite characteristics of G1 contrasting against urban clusters
from G2 and G3. Here, we present two examples of G1 and
G4. In the case of G1, urban clusters significantly having
the latent pattern P2 were classified as illustrated in Fig-
ure 10. As aforementioned above, these urban clusters were
located in the center of Osaka city where lots of people are
commuting, working, shopping, sightseeing, etc. as shown
in Figure 11(a). In addition, the urban clusters in G1 had
another characteristic latent pattern P8. Therefore, the ur-
ban clusters were characterized in terms of large population
and their sentiments. As for the urban clusters of G4 in Fig-
ure 10, it would be hard to grasp the image. Different from
downtown mainly for visitors around area of Osaka Kita and
Osaka Minami, these clusters can be regarded as multifunc-
tional districts for local residents. Indeed, the corresponding
clusters covered traditional shopping, entertainment and res-



(a) Urban clusters grouped in G1 (b) Urban clusters grouped in G4

Figure 11: Urban groups based on similarity of combination of latent patterns

idential districts as shown in Figure 11(b). Finally, we could
successfully characterize urban clusters classified into 4 dif-
ferent groups based on common combinations of 8 latent
patterns.

5. CONCLUSIONS AND FUTURE WORK
In this paper, we proposed a novel method to character-

ize urban areas by measuring latent characteristic relations
between urban areas and social conditions based on crowd
experiences. In detail, we defined social conditions in urban
clusters consisting of crowd’s experiential indicators from
geo-tagged tweets in terms of population, activity, mood,
topic, and social relationship. Then we analyzed latent pat-
terns by applying NMF to a matrix of social conditions and
urban clusters. In the experiment with geo-tagged tweets,
we could obtain reasonable results as urban area character-
ization focusing on crowd experiences in an urban space.
In the future work, we will perform further analyses of

latent relations of multi-dimensional components such as
space, time, and crowd experiences. In fact, it is a critical
challenge to develop such kinds of crowd experience min-
ing functions for the purpose of utilizing the social networks
as a fundamental framework to understand the emerging
open sharing space and furthermore to utilize the collective
experiences of crowds for constructing practical urban life
support systems.
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